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Abstract A finite-size two-dimensional photonic crystal composed of dielectric rods with holes centered within
each rod is considered. The geometry of the rods, as well as the holes, is of arbitrary shape. A boundary-
element method is implemented for computing the Green tensor. The semi-analytical solution is used for validating
the numerical results in the case of circular geometry. Different types of configurations and geometry shapes are
considered in the computation.
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1 Introduction

A photonic crystal (PC) is a periodic structure that has bandgap (a range of prohibited frequencies for the propagation
of electromagnetic waves inside).

Initially, much theoretical and experimental research in photonic crystals was carried out to calculate band
diagrams (the solution of the eigen problem associated with Maxwell’s equation) and find the transmission and
reflection spectra of such structures. This, however, provides little insight into the ways in which a PC modifies the
electromagnetic vacuum. This modification is seen from the computation of the Green tensor [1].

The existence of bandgap can be seen by the changes in the local density of states (LDOS), which is a function of
the Green tensor. In particular, for infinite structures, the LDOS vanishes inside a complete bandgap. For finite-size
crystals encountered in realistic situations, the LDOS for gap wavelengths is small but does not vanish.

Arrays of air-holes in a dielectric background and that of dielectric rods in an air background are the most
commonly found PCs in the literature. Recently a new type of structure called annular PC, composed of coated
materials, such as a dielectric background with an air-hole array and dielectric rods centered within each air-hole,
has drawn attention. If they could be designed, such crystals would have important technological applications [1–4].

Many simulation methods have been applied to study photonic crystals, including boundary-integral-based
methods [5,6], the transition matrix approach [1] and finite-element methods [7]. The T-matrix method has been
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developed to compute the transmission characteristics and the bandgap structure for circularly coated photonic
structures [8]. Numerical computation, based on layer potentials, for analyzing the bandgap in the case of annular
crystals of arbitrary shape has not been considered so far, to the best of our knowledge. In this paper we discuss
a boundary-integral method for computing the Green tensor for a two-dimensional (2D) coated PC of arbitrary
shape. In particular, we consider a finite-size PC composed of an array of dielectric rods in an air background
such that holes are centered within each dielectric rod. Thus, the clusters we consider consist of parallel, disjoint
two-layered cylinders of arbitrary shape. We implement the computational techniques and analyze the Green tensor,
using both the semi-analytical (for circular cylinders) and numerical boundary-element (for arbitrarily shaped cyl-
inders) methods, for a source at location xs and observation point at x. The source, a line antenna of infinite length
parallel to the cylinder axes, radiates with harmonic time dependence. The polarizations of the electromagnetic
waves decouple to TM and TE polarizations. The semi-analytical method [1] will be used to validate the numerical
algorithm.

The boundary-element technique developed in this paper uses potential theory and Green identities (cf. [9,10]),
and can be easily applied to other annular PC types considered in the literature. The boundary integrals use the
free-source Green’s function and inherits from its properties. The method requires matrix–vector multiplications,
which can be efficiently done by available fast multipole methods.

Our results show an excellent match between the semi-analytical [1] and the numerical methods. Our numerical
method is computationally efficient and can be implemented with short computation time.

2 Formulation of the problem

We consider a harmonic electromagnetic problem with wavelength λ and frequency ω, where the wave number is
given by k = ω/c = 2π/λ. The constant c represents the speed of light.

We wish to compute the electric-field Green tensor (the electric-field response to a source) in a photonic crystal
(PC), for a source at xs = (xs, ys, zs) and observation point at x = (x, y, z). The Green tensor is a second-rank
tensor with 3 × 3 components [11]. The elements in column u represent the components of the electric field vec-
tor (Gxu,G yu,Gzu) generated by a source radiating, with harmonic time dependence exp(−iωt), parallel to the
u = x, y, z axes, respectively.

The PC under consideration consists of a finite number (M) of infinite dielectric rods of arbitrary shape D̃l ,
l = 1, 2, . . . ,M , transverse to the x = (x, y)-plane. Each rod D̃l contains a hole�2

l , l = 1, 2, . . . ,M . The annulus

between the two regions is denoted by�1
l = D̃l\�2

l . The region outside the rods is denoted by�0 = R2\∪M
l=1 (D̃l),

and the medium is characterized by the refractive index ν(x). In Fig. 1 we represent a finite-size annular PC consisting

Fig. 1 A finite-size annular
PC consisting of 17 rods
with holes

air−hole rod
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Fig. 2 The computations
are made for four
configurations: a the rods
and the holes are circular
‘CC’; b The rods are
circular and the holes are
deformed circles ‘CD’;
c the rods are square and the
holes are circular ‘SC’;
d the rods are square and
the holes are deformed
circles ‘SD’

(a) (b)

(c) (d)

of 17 circular dielectric cylinders with circular holes. In Fig. 2 we describe the different configurations (CC, CD,
SC and SD) of the geometry that we will use in our numerical computation. We have used squares with rounded
corners for ensuring an exponential convergence in our result, but the results are not affected by this approxima-
tion.

Since we consider a two-dimensional in-plane problem, the vector character of the fields in the Maxwell equa-
tions implies that one has to distinguish two possible polarization directions with differing boundary conditions.
The situation where the electric (resp. magnetic) field is parallel to the cylinders (z)-axis is called TM (resp. TE)
polarization, with the magnetic (resp. electric) field thus being transverse.

For TM polarization the Green tensor reduces to a form involving only a single non-trivial scalar GTM = Gzz ,
while for TE polarization it reduces to a 2 × 2 tensor form GTE = (Gxu,G yu), u representing x or y, [11].

Before we try and find the components of the Green tensor for the PC structure presented above we will first
give the mathematical formulation of the problem, considering the case in which the source is located outside as
well as that when it is inside the cylinders.

2.1 The case of TM polarization

For TM polarization the Green tensor GTM = Gzz(x, xs) satisfies the following equation [12],

∇2GTM + k2νGTM = δ(x − xs), (1)

where δ is the Dirac delta function. We assume further that the refractive index ν and the Green tensor are given,
for l = 1, 2 . . . ,M , and j = 1, 2, by
(
ν(x),GTM(x)

)
=

{
(ν

j
l ,GTM, j

l (x)), x ∈ � j
l ,

(ν0,GTM
0 (x)), x ∈ �0,

where ν j
l and ν0 are real positive constants, with ν j

l > 1.
We have continuity conditions (cf. [5]), for GTM and its normal derivative, on the boundary of D̃l , the interface

�1
l between �0 and each rod D̃l , and on the interface �2

l (the boundary of �2
l ) between the hole �2

l and �1
l ,

l = 1, 2, . . . ,M , i.e., we have the following boundary conditions:

GTM,2
l = GTM,1

l and
∂

∂N
GTM,2

l = ∂

∂N
GTM,1

l , on �2
l , (2)
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and

GTM
0 = GTM,1

l and
∂

∂N
GTM

0 = ∂

∂N
GTM,1

l , on �1
l , (3)

where N is the unit normal which is assumed to be directed towards the exterior.
Let us introduce the fundamental solution to the Helmholtz equations in free space as

	
j
l (x, x′) = − i

4
H (1)

0 (κ
j

l |x − x′|), l = 1, 2, . . . ,M, and j = 1, 2,

where κ j
l = k

√
ν

j
l , and H (1)

0 is the Hankel function of the first kind and order zero. We also use the notation

	0(x, x′) = −iH (1)
0 (k

√
ν0|x − x′|)/4.

Now, for l = 1, . . . ,M , and j = 1, 2, define in � j
l ,

u j
l (x) = GTM, j

l (x)− ξ
int, j
l 	

j
l (x, xs),

where ξ int, j
l = 1 (resp. ξ int, j

l = 0) if xs lies in � j
l (resp. outside of � j

l ). Define in the exterior

u0(x) = GTM
0 (x)− ξext	0(x, xs),

where ξext = 1 (resp. ξext = 0) if xs lies in �0 (resp. otherwise). Since 	 satisfies Eq. 1 with x′ replaced by xs

we have,

∇2u j
l + k2ν

j
l u j

l = 0 in � j
l , l = 1, 2, . . . ,M, and j = 1, 2, (4)

∇2u0 + k2ν0u0 = 0 in �0. (5)

The boundary conditions (2) and (3) give, for l = 1, 2, . . . ,M ,

u1
l − u2

l = f 1,2
l and

∂

∂N
(u1

l − u2
l ) = ∂ f 1,2

l

∂N
, on �2

l , (6)

and

u1
l − u0 = f 1,0

l and
∂

∂N
(u1

l − u0) = ∂ f 1,0
l

∂N
on �1

l , (7)

where

f 1,2
l = ξ

int,2
l 	2

l − ξ
int,1
l 	1

l

f 1,0
l = ξext	0 − ξ

int,1
l 	1

l

In addition, we assume the Sommerfeld radiation condition for u0, i.e.,

lim|x|→∞ |x|1/2
(
∂u0

∂|x| − ikν0u0

)
= 0. (8)

So, to obtain the Green tensor in (1), we solve the problem (4)–(8) to obtain ul , then GTM, j
l = u j

l + ξ
int, j
l 	

j
l ,

for l = 1, 2, . . . ,M and j = 1, 2; and u0, then GTM
0 = u0 + ξext	0.

2.2 The case of TE polarization

For TE polarization, the process is similar (but less direct) to the TM case and requires the solution of two scalar
problems for GTE,u = (Gxu,G yu), where u = x, y [12]. The components of the Green tensor are electric field
quantities derived from the magnetic field G M,u , generated by a current source, according to

Gxx = i

kν0

∂G M,x

∂y
, G yx = –i

kν0

∂G M,x

∂x
, (9)

Gxy = i

kν0

∂G M,y

∂y
, G yy = –i

kν0

∂G M,y

∂x
, (10)
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where

∇2G M,x + k2νG M,x = i

k

∂

∂y
δ(x − xs) and ∇2G M,y + k2νG M,y = − i

k

∂

∂x
δ(x − xs). (11)

Similarly to the TM case, it is straightforward to derive from (11), for G M,x (resp. G M,y) the same type of
equations like in (4)–(8), by replacing 	 with 	x = −H (1)

1 (κ
√
ν|x − x′|) sin(θ)/4 (resp. 	y = H (1)

1 (κ
√
ν|x −

x′|) cos(θ)/4), and taking into account that for the TE case we have continuity of G M and N · ∇G M/ν. Here
θ = arg(x − x′). Having computed G M,x and G M,y , we recover the TE Green tensor from (9) and (10).

3 The computational methods

3.1 Boundary integrals and the boundary-integral-equation formulation

Since we have essentially the same types of equations for TM and TE polarizations, for clarity, we develop the
computational method only for the TM case, although we present the computation results for both TM and TE
polarizations. Our numerical method is based on the boundary-integral method, using potential theory and Green’s
theorem [5]. To obtain the desired integral equations, we look for solutions in the holes as layer potentials, apply
Green’s identity in the annulus regions, and write the solutions of the outer region as a sum of layer potentials.

Let us define the single- and double-layer potentials, for l = 1, 2, . . . ,M , and j = 1, 2, by

Sl, j
n φ

j
l (x) = 2

∫

�
j
l

	
j
n(x, x′)φ j

l (x
′) ds(x′), x ∈ R2\� j

l ,

and

Dl, j
n ψ

j
l (x) = 2

∫

�
j
l

∂

∂N(x′)
	

j
n(x, x′)ψ j

l (x
′) ds(x′), x ∈ R2\� j

l ,

respectively, for n = 1, . . . ,M . where the functions φ j
l and ψ j

l are the density functions. We also define Sl, j
0 and

Dl, j
0 as above with 	 j

n replaced by 	0. We denote by Pm,l, j and Qm,l, j the normal derivatives of Sl, j and Dl, j

at some point on a boundary � j
m , m �= l, respectively. Accordingly we denote by Sm,l, jφ(x) and Dm,l, jψ(x) the

values of Sl, jφ(x) and Dl, jψ(x) when x belongs to � j
m , m �= l.

It is known (cf. [10] and [13, Sect. 2.7]) that the above-defined potentials are analytic in R2\� j
l and, when x

approaches � j
l , Sl, j and Ql, j , are continuous whereas Dl, j and Pl, j exhibit jumps. In particular,we have on � j

l ,

Sm,l, j → Ŝl, j , N m,l, j → N̂ l, j , (12)

Dm,l, j → ∓I + D̂l, j and Pm,l, j → ±I + P̂l, j , (13)

where the upper (lower) sign corresponds to the limit when x approaches � j
l from outside (inside) and I is the

identity operator. The compact operators Ŝl, j , P̂l, j , D̂l, j : C(� j
l ) → C(� j

l ) are given, on � j
l , by

Ŝl, j
n φ

j
l (x) =

∫

�
j
l

	n(x, y)φ j
l (y) ds(y), x ∈ � j

l , (14)

P̂l, j
n φ

j
l (x) =

∫

�
j
l

∂

∂N(x)
	n(x, y)φ j

l (y) ds(y), x ∈ � j
l , (15)

D̂l, j
n ψl(x) =

∫

�
j
l

∂

∂N(y)
	n(x, y)ψ j

l (y) ds(y), x ∈ � j
l (16)

and the unbounded operator N̂ l, j
n : ϒ(� j

l ) → C(� j
l ) is given, on � j

l , by
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N̂ l, j
n ψ

j
l (x) = ∂

∂N(x)

∫

�
j
l

∂

∂N(y)
	n(x, y)ψl(y) ds(y), x ∈ � j

l . (17)

Here C(�) is the linear space of all continuous functions on �, and ϒ(�) is the linear space of all continuous
functions ψ with the property that the double-layer potential with density ψ has continuous normal derivatives on
both sides of �. It can be shown that N̂ l, j

m − N̂ l, j
n , m �= n, is a compact operator in C(� j

l ). We refer to [13, Sect. 2.7],
for details and proof of compactness for the above operators.

Applying Green’s theorem [14, Sect. 2.2], for l = 1, . . . ,M , we obtain

− 2u1
l (x) =

2∑
j=1

(
Sl, j

l
∂

∂N
u1

l (x)− Dl, j
l u1

l (x)
)
, x ∈ �1

l (18)

and

0 =
2∑

j=1

(
Sl, j

l
∂

∂N
u1

l (x)− Dl, j
l u1

l (x)
)
, x �∈ �1

l . (19)

So, we obtain the field inside �1
l by (18) once we know it and its normal derivatives on the boundaries. For

the holes �2
l and in the exterior domain �0, we look for the fields as a combination of single- and double-layer

potentials, i.e.,

u2
l = (Sl,2

l + iαDl,2
l )φ2

l , x ∈ �2
l , l = 1, . . . ,M, (20)

and

u0 =
M∑

l=1

(Sl,1
0 + iβDl,1

0 )φ1
l , x ∈ �0. (21)

where α and β are positive real constants.
Using (12) and (13) we obtain on the boundaries, for l = 1, . . . ,M ,

u2
l = Q̂l,2

l φ2
l ,

∂u2
l

∂N
= R̂l,2

l φ2
l on �2

l , (22)

and

u0 = V̂ l,1
0 φ1

l +
M∑

n �=l

V l,n,1
0 φ1

n ,
∂u0

∂N
= Ŵ l,1

0 φ1
l +

M∑
n �=l

W l,n,1
0 φ1

n on �1
l . (23)

where

Q̂l,2
l = Ŝl,2

l + iα(D̂l,2
l + I ), R̂l,2

l = (P̂l,2
l − I )+ iα N̂ l,2

l

V l,n,1
0 = Sl,n,1

0 + iβDl,n,1
0 , W l,n,1

0 = Pl,n,1
0 + iβNl,n,1

0 ,

V̂ l,1
0 = Ŝl,1

0 + iβ(D̂l,1
0 − I ) and Ŵ l,1

0 = (P̂l,1
0 + I )+ iβ N̂ l,1

0

By straightforward calculations we can see that u0 given in (21) satisfies the Sommerfeld radiation condition.
Clearly, for l = 1, . . . ,M , and j = 1, 2, u j

l and u0 given in (18), (20) and (21) are solutions of (4) and (5),
respectively.

Now, we obtain φ j
l , for l = 1, . . . ,M , and j = 1, 2, from a system of boundary-integral equations, by using the

boundary conditions (6) and (7) in (19).
In particular, to obtain the desired boundary-integral equations, we let x tend to the boundary in (19), using the

boundary conditions (6) and (7), and jump properties of layer potentials (12) and (13). We then have
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Ŝl,1
l
∂u0

∂N
− (D̂l,1

l − I )u0 + S1,l,2
l

∂u2
l

∂N
− D1,l,2

l u2
l = Fl (24)

on �1
l , where

Fl = Ŝl,1
l

∂ f 1,0
l

∂N
− (D̂l,1

l − I ) f 1,0
l + S1,l,2

l

∂ f 1,2
l

∂N
− D1,l,2

l f 1,2
l ,

and

S2,l,1
l

∂u0

∂N
− D2,l,1

l u0 + Ŝl,2
l

∂u2
l

∂N
− (I + D̂l,2

l )u2
l = Gl (25)

on �2
l , where

Gl = S2,l,1
l

∂ f 1,0
l

∂N
− D2,l,1

l f 1,0
l + Ŝl,2

l

∂ f 1,2
l

∂N
− (I + D̂l,2

l ) f 1,2
l .

Using (22) and (23) we can write (24) and (25) in a simplified form as

Fl = Âl,1
0 φ1

l +
M∑

n=1,n �=l

Al,n,1
0 φ1

n + B1,l,2
l φ2

l on �1
l , l = 1, 2, . . . ,M, (26)

and

Gl = A2,l,1
0 φ1

l +
M∑

n=1,n �=l

Al,n,2
0 φ1

n + B̂l,2
l φ2

l on �2
l , l = 1, 2, . . . ,M, (27)

where

Âl,1
0 = Ŝl,1

l Ŵ l,1
0 −

(
D̂l,1

l − I
)

V̂ l,1
0 ,

Al,n,1
0 = Ŝl,1

l Ŵ l,n,1
0 −

(
D̂l,1

l − I
)

V l,n,1
0 ,

B1,l,2
l = S1,l,2

l R̂l,2
l − D1,l,2

l Q̂l,2
l ,

A2,l,1
0 = S2,l,1

l Ŵ l,1
0 − D2,l,1

l V̂ l,1
0 ,

Al,n,2
0 = S2,l,1

l W l,n,1
0 − D2,l,1

l V l,n,1
0 ,

and

B̂l,2
l = Ŝl,2

l R̂l,2
l − (I + D̂l,2

l )Q̂l,2
l .

Using the identity Ŝl, j
n N̂ l, j

n = −I +
(

D̂l, j
n

)2
[10] in Âl,1

0 and B̂l,2
l we observe that the system (26), (27) is of

Fredholm type. It is straightforward to see that the boundary conditions (6) and (7) are satisfied ifφ j
l , l = 1, 2, . . . ,M

and j = 1, 2 are solutions of (26) and (27). The unique solvability follows from Riesz–Fredholm theory [10].

3.2 Parametrization and discretization

The boundaries � j
l , l = 1, 2, . . . ,M , and j = 1, 2 are assumed to possess regular analytic and 2π -periodic

representation of the form

x j
l (t) =

(
x j

l,1(t), x j
l,2(t)

)
, 0 ≤ t ≤ 2π, (28)

in counterclockwise orientation, such that, the unit outward normal N
(

x j
l

)
:= Nl(x) is written as
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N
(

x j
l (t)

)
= 1∣∣∣x j

l

′
(t)

∣∣∣
µl(t), (29)

where,

µl(t) :=
(

x j
l,2

′
(t)

−x j
l,1

′
(t)

)
.

Then, we write Sm,l, j , Dm,l, j , Pm,l, j and N m,l, j in the form

Um,l, j
n (φxm(t)) = − i

2

2π∫

0

Un

(
xm(t), x j

l (τ )
)
φ(x j

l (τ ))|x j
l

′
(τ )| dτ, (30)

where the kernel Un(x, y) is given by

Un(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H (1)
0 (κn|x − y|) when Um,l, j

n = Sm,l, j
n

∂
∂N(y)H (1)

0 (κn|x − y|) when Um,l, j
n = Dm,l, j

k
∂

∂N(x)H (1)
0 (κn|x − y|) when Um,l, j

n = Pm,l, j
n

∂
∂N(x)

(
∂

∂N(y)H (1)
0 (κn|x − y|)

)
when Um,l, j

n = N m,l, j
n

(31)

The Nyström’s method replaces the integrals in (30) by integrals of the trigonometric interpolation polynomials
with respect to τ of the integrands. In particular, for M ∈ N and tn = πn/M , n = 0, . . . , 2M − 1, the integrals of
the form

∫ 2π
0 f (τ ) dτ are approximated such that

2π∫

0

f (τ ) dτ ≈ π

M

2M−1∑
n=0

f (tn). (32)

For m �= l we can use (32) to derive a discretized form of Um,l, j
n .

We discretize the boundary integrals (14)–(17) by the exponentially converging Nyström method (Cf. [14,
Sect. 3.5] and [15].

3.3 The numerical and semi-analytical algorithms

The problem (26), (27) will then have a discrtized form. The resulting matrix equation is solved by a multigrid
method [16, Chap. 14]. The numerous matrix–vector multiplication can be done efficiently by a fast multipole
method [17].

Finally, we describe briefly the semi-analytical method used for validation. For more details, we refer to [1]. If
the finite-size PC is composed of circular rods and circular holes, a closed-form solution can be derived. We take
the solution of the hole domains as an infinite expansion of Bessel functions of the first kind, the solutions in the
annular regions as an expansion of Bessel functions of the first kind and Hankel functions of the first kind, and
the solution of the outer region as an expansion of Hankel functions of the first kind. Then, using the boundary
conditions and the Graf formula, we obtain an infinite system. This system is truncated and a multigrid method is
used for approximating the solution.

4 Computational results

We assume a crystal with a hexagonal symmetry (Fig. 1), composed of a set of dielectric cylinders which are either
circular with radius r = 0.6 or square of the same size (the side is equal to the diameter of the circular geometry),
spacing constant (distance between the centers of the closest cylinders) d = 4 (see Fig. 2), wavelength λ, ν0 = 1,

123



Coated photonic crystals: computation of the Green tensor and analysis of the bandgap 251

−20 −10 0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

(a)

−20 −10 0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

(b)

Fig. 3 The absolute value of the Green tensor components Gxx (a) and G yx (b) against the x-coordinate for a wave length λ = 3.05
by the numerical method (solid line) and semi-analytical result (o) for an annular crystal case CC composed of 85 rods, using holes
with radius r0 = 0.2

ν2
l = 1, and ν1

l = 2.9, l = 1, . . . ,M . The holes are either circular with radius r0 or deformed circles of the same
size.

The first numerical result we want to present is the computation of the Green tensor components for a CC case
annular PC composed of 85 dielectrics. In Figs. 3 and 4 we plot Gxx , G yx , and G yy , Gzz , respectively, for λ = 3.05,
using the semi-analytical and the boundary-integral methods. We observe a very a good match of the two methods
for all the components.

Having validated all the Green-tensor components for TE and TM cases, in the sequel we only consider the latter.
In particular, we will compute and analyze GTM for various configurations.

For the above-mentioned parameter values, when we vary the radius of the hole from r1
0 = 0.1 to r2

0 = 0.3, it is
known [8] that the gap interval shrinks for wavelengths from approximately [7.3, 10.6] to approximately [7.3, 9.5].
In Fig. 5, when we compute the Green tensor for a point source placed in the crystal using λ = 10.4 for r1

0 and
r2

0 , we see, first of all, a very good match between the numerical and the semi-analytical results. Secondly, we
observe that the Green tensor decays much faster outside the crystal for r1

0 in contrast to r2
0 . This is expected since

it means (cf. [18]) that for the hole radius r1
0 , λ = 10.45 lies within the gap, whereas for r2

0 it does no longer
belong to the bandgap. Note that there is no symmetry in the figures since the source is placed randomly in the
crystal.

Now, for a fixed wavelength λ = 8.05, two different values of r0 (r0 = 0.2 and r0 = 0.5), and a source located
in the PC we plot the absolute value of the Green tensor on the x-coordinate using the semi-analytical and the
numerical methods in the CC case of crystal containing 17 and 49 rods. The result is reported in Fig. 6.

We see, in all the cases, a very good match between the numerical and the semi-analytical results. We also see
that the Green tensor decays much faster outside the crystal for r0 = 0.2 than for r0 = 0.5. This means that, for the
radius r0 = 0.5, λ = 8.05 does no longer belong to the bandgap. Moreover he result converges when the number
of rods is increased.

In Fig. 7 we do the same numerical computations as in Fig. 6 for the cases CD, SC, and SD where the semi-
analytical computation cannot be applied.
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Fig. 4 The absolute value of the Green tensor components G yy (a) and Gzz (b) against the x-coordinate for a wave length λ = 3.05 by
the numerical method (solid line) and semi-analytical result (o) for an annular crystal case CC composed of 85 rods, using holes with
radius r0 = 0.2

Fig. 5 The absolute value
of the TM Green tensor
against the x-coordinate for
a wave length λ = 10.4 by
the numerical method (solid
line), in an annular crystal
case CC for 85 rods, using a
hole with radius 0.1 (red)
and 0.3 (blue). The
semi-analytical result is
shown for the latter case (o),
where we see a good match
with the numerical solution
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We see that the results are very similar in the four cases for r0 = 0.2, whereas they are different in all cases for
r0 = 0.5. This suggests that a small deformation in the geometry (rods and/or holes) should not have serious impact
on the bandgap.

Finally, for a source point placed in the crystal, we consider the behavior of the Green tensor when the hole
radius varies. We study two cases: when the evaluation of the Green tensor is at a point within the crystal (Fig. 8)
and when it is at a point far away from the crystal (Fig. 9). We know, from our analysis above, that in the latter case
the absolute value of the Green tensor must be very small for a wavelength within the bandgap.

Let us consider two configurations of the geometry: the cases CC and SD. We see in Fig. 8 that, in both CC
and SD cases, for a wavelength out of the bandgap for r0 = 0 (λ = 3.05) the absolute value of the Green tensor
oscillates, whereas for a wavelength within the bandgap for r0 = 0 (λ = 8.05) the absolute value of the Green

123



Coated photonic crystals: computation of the Green tensor and analysis of the bandgap 253

−20 0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

−20 0 20 40 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fig. 6 In the two figures we plot the absolute value of the TM Green tensor against the x-coordinate for a wave length λ = 8.05 using
the semi-analytical (–) and the numerical methods (x), in an annular crystal case CC for 17 rods (red) and 49 rods (blue). The figure on
the left is the case when the hole has radius 0.2, and the figure on the right consists of the case when the hole has radius 0.5

tensor is smooth with only one minimum. However, the location of the minimum is different for the CC and SD
cases.

In Fig. 9 where the Green tensor is evaluated far away from the crystal the observation is different than the
previous case only for λ = 8.05. Indeed, in the CC configuration, we see that the absolute value of the Green tensor
grows slowly until it reaches values comparable to its evaluation at points inside the crystal, then decays very fast
and grows back. This suggests, as mentioned in [2], that by increasing r0 the gap closes and after a threshold of
r0 it reopens. This observation does not occur for the SD case. Hence the bandgap formed after a threshold radius
may be sensitive to small deformation in the geometry.

5 Conclusions

We have considered a two-dimensional annular photonic crystal of different geometrical configurations, which has
a structure sketched in Figs. 1 and 2. The vector character of the fields in the Maxwell’s equations implies that
one has to distinguish two possible polarization directions with differing boundary conditions. The situation where
the electric (resp. magnetic) field is parallel to the cylinders (z)-axis is called TM (resp. TE) polarization, with the
magnetic (resp. electric) field thus being transverse.

We computed and analyzed the Green tensor for given source placed within the structure and an observation
point. The TM and TE cases were both considered. For TM polarization the Green tensor reduces to a form involving
only a single non-trivial scalar, while for TE polarization it reduces to a 2 × 2 tensor.

The numerical method used is the boundary-element technique based on potential theory and Green identi-
ties. We derived the boundary-integral equations that could be uniquely solvable using Riesz–Fredholm theory.
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Fig. 7 In the two figures we plot the absolute value of the TM Green tensor against the x-coordinate for a wave length λ = 8.05. In
both figures the numerical solution is computed for the cases of ‘SC’ (red), ‘CD’ (blue) and ‘SD’ (green). The figure on the left is the
case when the hole is either circular with radius r0 = 0.2 or a deformed circle of the same size, and the figure on the right consists of
the case when the hole is either circular with radius r0 = 0.5 or a deformed circle of the same size
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Fig. 8 The absolute value of the TM Green tensor evaluated at
a point in the crystal against the radius of the hole r0 for a source
placed in the crystal. The solid red (resp. blue) is the case of CC
(resp. SD) for λ = 3.05. The dashed red (resp. blue) is the case
of CC (resp. SD) for λ = 8.05
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Fig. 9 The absolute value of the TM Green tensor evaluated at
a point far from the crystal against the radius of the hole r0 for
a source placed in the crystal. The solid green (resp. blue) is the
case of CC (resp. SD) for λ = 3.05. The dashed red (resp. blue)
is the case of CC (resp. SD) for λ = 8.05

The boundary integrals use the free-source Green’s function and inherit from its properties. The method requires
matrix–vector multiplications, which can be efficiently done by available fast multipole methods.

Our numerical results show an excellent match between the semi-analytical calculations and the numerical
method developed here.
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For all the different geometrical configurations used, if we use two different values r1
0 and r2

0 , with r1
0 < r2

0 , for
the radius of the hole, the gap interval shrinks. When we compute the Green tensor for a point source placed in the
crystal using a wavelength within the bandgap, we observe that the Green tensor decays much faster outside the
crystal in contrast to the case when the wavelength does no longer belong to the bandgap. This suggests that for
certain values of the hole radius the Green tensor is not sensitive to the geometry.

Our results also suggest that, when increasing the radius of the hole, the gap closes and after a certain threshold
it reopens. But the value of this threshold radius is sensitive to the geometry. Further studies will be necessary to
establish the safety of this effect.

An experimental verification of some results obtained in this paper and the analysis in the three-dimensional
case for non-spherical shapes are considered in our future work.
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